Extensions 1→N→G→Q→1 with N=C22xD4 and Q=C4

Direct product G=NxQ with N=C22xD4 and Q=C4
dρLabelID
D4xC22xC464D4xC2^2xC4128,2154

Semidirect products G=N:Q with N=C22xD4 and Q=C4
extensionφ:Q→Out NdρLabelID
(C22xD4):1C4 = C24.D4φ: C4/C1C4 ⊆ Out C22xD416(C2^2xD4):1C4128,75
(C22xD4):2C4 = C2xC22.SD16φ: C4/C1C4 ⊆ Out C22xD432(C2^2xD4):2C4128,230
(C22xD4):3C4 = C24.54D4φ: C4/C1C4 ⊆ Out C22xD432(C2^2xD4):3C4128,239
(C22xD4):4C4 = C24.56D4φ: C4/C1C4 ⊆ Out C22xD432(C2^2xD4):4C4128,242
(C22xD4):5C4 = C24.60D4φ: C4/C1C4 ⊆ Out C22xD432(C2^2xD4):5C4128,251
(C22xD4):6C4 = C4oD4.D4φ: C4/C1C4 ⊆ Out C22xD4168+(C2^2xD4):6C4128,527
(C22xD4):7C4 = C24.78D4φ: C4/C1C4 ⊆ Out C22xD416(C2^2xD4):7C4128,630
(C22xD4):8C4 = C24.175C23φ: C4/C1C4 ⊆ Out C22xD432(C2^2xD4):8C4128,696
(C22xD4):9C4 = C24.36D4φ: C4/C1C4 ⊆ Out C22xD4168+(C2^2xD4):9C4128,853
(C22xD4):10C4 = C2wrC4:C2φ: C4/C1C4 ⊆ Out C22xD4168+(C2^2xD4):10C4128,854
(C22xD4):11C4 = C2xC42:C4φ: C4/C1C4 ⊆ Out C22xD416(C2^2xD4):11C4128,856
(C22xD4):12C4 = C4.4D4:C4φ: C4/C1C4 ⊆ Out C22xD4168+(C2^2xD4):12C4128,860
(C22xD4):13C4 = C23.C24φ: C4/C1C4 ⊆ Out C22xD4168+(C2^2xD4):13C4128,1615
(C22xD4):14C4 = C24.50D4φ: C4/C2C2 ⊆ Out C22xD464(C2^2xD4):14C4128,170
(C22xD4):15C4 = C25:C4φ: C4/C2C2 ⊆ Out C22xD416(C2^2xD4):15C4128,513
(C22xD4):16C4 = C24.165C23φ: C4/C2C2 ⊆ Out C22xD432(C2^2xD4):16C4128,514
(C22xD4):17C4 = C23.35D8φ: C4/C2C2 ⊆ Out C22xD432(C2^2xD4):17C4128,518
(C22xD4):18C4 = C24.66D4φ: C4/C2C2 ⊆ Out C22xD432(C2^2xD4):18C4128,521
(C22xD4):19C4 = C2xC23.23D4φ: C4/C2C2 ⊆ Out C22xD464(C2^2xD4):19C4128,1019
(C22xD4):20C4 = C2xC24.3C22φ: C4/C2C2 ⊆ Out C22xD464(C2^2xD4):20C4128,1024
(C22xD4):21C4 = C24.90D4φ: C4/C2C2 ⊆ Out C22xD432(C2^2xD4):21C4128,1040
(C22xD4):22C4 = C23.191C24φ: C4/C2C2 ⊆ Out C22xD432(C2^2xD4):22C4128,1041
(C22xD4):23C4 = D4xC22:C4φ: C4/C2C2 ⊆ Out C22xD432(C2^2xD4):23C4128,1070
(C22xD4):24C4 = C22xC23:C4φ: C4/C2C2 ⊆ Out C22xD432(C2^2xD4):24C4128,1613
(C22xD4):25C4 = C2xC23.C23φ: C4/C2C2 ⊆ Out C22xD432(C2^2xD4):25C4128,1614
(C22xD4):26C4 = C22xD4:C4φ: C4/C2C2 ⊆ Out C22xD464(C2^2xD4):26C4128,1622
(C22xD4):27C4 = C2xC23.37D4φ: C4/C2C2 ⊆ Out C22xD432(C2^2xD4):27C4128,1625
(C22xD4):28C4 = C22xC4wrC2φ: C4/C2C2 ⊆ Out C22xD432(C2^2xD4):28C4128,1631
(C22xD4):29C4 = C2xC42:C22φ: C4/C2C2 ⊆ Out C22xD432(C2^2xD4):29C4128,1632
(C22xD4):30C4 = C2xC22.11C24φ: C4/C2C2 ⊆ Out C22xD432(C2^2xD4):30C4128,2157

Non-split extensions G=N.Q with N=C22xD4 and Q=C4
extensionφ:Q→Out NdρLabelID
(C22xD4).1C4 = (C2xC4).98D8φ: C4/C1C4 ⊆ Out C22xD464(C2^2xD4).1C4128,2
(C22xD4).2C4 = (C2xD4):C8φ: C4/C1C4 ⊆ Out C22xD432(C2^2xD4).2C4128,50
(C22xD4).3C4 = C2.C2wrC4φ: C4/C1C4 ⊆ Out C22xD432(C2^2xD4).3C4128,77
(C22xD4).4C4 = C23:C8:C2φ: C4/C1C4 ⊆ Out C22xD432(C2^2xD4).4C4128,200
(C22xD4).5C4 = C42.395D4φ: C4/C1C4 ⊆ Out C22xD432(C2^2xD4).5C4128,201
(C22xD4).6C4 = C24.(C2xC4)φ: C4/C1C4 ⊆ Out C22xD432(C2^2xD4).6C4128,203
(C22xD4).7C4 = C2xC42.C22φ: C4/C1C4 ⊆ Out C22xD464(C2^2xD4).7C4128,254
(C22xD4).8C4 = C42.407D4φ: C4/C1C4 ⊆ Out C22xD432(C2^2xD4).8C4128,259
(C22xD4).9C4 = C42.70D4φ: C4/C1C4 ⊆ Out C22xD432(C2^2xD4).9C4128,265
(C22xD4).10C4 = C2xC4.D8φ: C4/C1C4 ⊆ Out C22xD464(C2^2xD4).10C4128,270
(C22xD4).11C4 = C42.413D4φ: C4/C1C4 ⊆ Out C22xD432(C2^2xD4).11C4128,277
(C22xD4).12C4 = C42.82D4φ: C4/C1C4 ⊆ Out C22xD432(C2^2xD4).12C4128,287
(C22xD4).13C4 = M4(2):20D4φ: C4/C1C4 ⊆ Out C22xD432(C2^2xD4).13C4128,632
(C22xD4).14C4 = M4(2):12D4φ: C4/C1C4 ⊆ Out C22xD432(C2^2xD4).14C4128,697
(C22xD4).15C4 = C2xC42.C4φ: C4/C1C4 ⊆ Out C22xD432(C2^2xD4).15C4128,862
(C22xD4).16C4 = C4:1D4.C4φ: C4/C1C4 ⊆ Out C22xD4168+(C2^2xD4).16C4128,866
(C22xD4).17C4 = M4(2).24C23φ: C4/C1C4 ⊆ Out C22xD4168+(C2^2xD4).17C4128,1620
(C22xD4).18C4 = C23.8M4(2)φ: C4/C2C2 ⊆ Out C22xD432(C2^2xD4).18C4128,191
(C22xD4).19C4 = C42.393D4φ: C4/C2C2 ⊆ Out C22xD432(C2^2xD4).19C4128,192
(C22xD4).20C4 = C23:M4(2)φ: C4/C2C2 ⊆ Out C22xD432(C2^2xD4).20C4128,197
(C22xD4).21C4 = C42.43D4φ: C4/C2C2 ⊆ Out C22xD432(C2^2xD4).21C4128,198
(C22xD4).22C4 = C2xD4:C8φ: C4/C2C2 ⊆ Out C22xD464(C2^2xD4).22C4128,206
(C22xD4).23C4 = C42.398D4φ: C4/C2C2 ⊆ Out C22xD432(C2^2xD4).23C4128,210
(C22xD4).24C4 = D4:M4(2)φ: C4/C2C2 ⊆ Out C22xD432(C2^2xD4).24C4128,218
(C22xD4).25C4 = D4:5M4(2)φ: C4/C2C2 ⊆ Out C22xD432(C2^2xD4).25C4128,222
(C22xD4).26C4 = C24.51(C2xC4)φ: C4/C2C2 ⊆ Out C22xD464(C2^2xD4).26C4128,512
(C22xD4).27C4 = C25.C4φ: C4/C2C2 ⊆ Out C22xD416(C2^2xD4).27C4128,515
(C22xD4).28C4 = (C23xC4).C4φ: C4/C2C2 ⊆ Out C22xD432(C2^2xD4).28C4128,517
(C22xD4).29C4 = C23.22M4(2)φ: C4/C2C2 ⊆ Out C22xD464(C2^2xD4).29C4128,601
(C22xD4).30C4 = C23:2M4(2)φ: C4/C2C2 ⊆ Out C22xD464(C2^2xD4).30C4128,602
(C22xD4).31C4 = C42.325D4φ: C4/C2C2 ⊆ Out C22xD464(C2^2xD4).31C4128,686
(C22xD4).32C4 = C42.109D4φ: C4/C2C2 ⊆ Out C22xD464(C2^2xD4).32C4128,687
(C22xD4).33C4 = C2x(C22xC8):C2φ: C4/C2C2 ⊆ Out C22xD464(C2^2xD4).33C4128,1610
(C22xD4).34C4 = C24.73(C2xC4)φ: C4/C2C2 ⊆ Out C22xD432(C2^2xD4).34C4128,1611
(C22xD4).35C4 = D4o(C22:C8)φ: C4/C2C2 ⊆ Out C22xD432(C2^2xD4).35C4128,1612
(C22xD4).36C4 = C22xC4.D4φ: C4/C2C2 ⊆ Out C22xD432(C2^2xD4).36C4128,1617
(C22xD4).37C4 = C2xM4(2).8C22φ: C4/C2C2 ⊆ Out C22xD432(C2^2xD4).37C4128,1619
(C22xD4).38C4 = C2xC8:9D4φ: C4/C2C2 ⊆ Out C22xD464(C2^2xD4).38C4128,1659
(C22xD4).39C4 = C2xC8:6D4φ: C4/C2C2 ⊆ Out C22xD464(C2^2xD4).39C4128,1660
(C22xD4).40C4 = D4xM4(2)φ: C4/C2C2 ⊆ Out C22xD432(C2^2xD4).40C4128,1666
(C22xD4).41C4 = C42.691C23φ: C4/C2C2 ⊆ Out C22xD432(C2^2xD4).41C4128,1704
(C22xD4).42C4 = C23:3M4(2)φ: C4/C2C2 ⊆ Out C22xD432(C2^2xD4).42C4128,1705
(C22xD4).43C4 = D4:7M4(2)φ: C4/C2C2 ⊆ Out C22xD432(C2^2xD4).43C4128,1706
(C22xD4).44C4 = C42.693C23φ: C4/C2C2 ⊆ Out C22xD432(C2^2xD4).44C4128,1707
(C22xD4).45C4 = C2xQ8oM4(2)φ: C4/C2C2 ⊆ Out C22xD432(C2^2xD4).45C4128,2304
(C22xD4).46C4 = D4xC2xC8φ: trivial image64(C2^2xD4).46C4128,1658
(C22xD4).47C4 = C22xC8oD4φ: trivial image64(C2^2xD4).47C4128,2303

׿
x
:
Z
F
o
wr
Q
<