extension | φ:Q→Out N | d | ρ | Label | ID |
(C22xD4).1C4 = (C2xC4).98D8 | φ: C4/C1 → C4 ⊆ Out C22xD4 | 64 | | (C2^2xD4).1C4 | 128,2 |
(C22xD4).2C4 = (C2xD4):C8 | φ: C4/C1 → C4 ⊆ Out C22xD4 | 32 | | (C2^2xD4).2C4 | 128,50 |
(C22xD4).3C4 = C2.C2wrC4 | φ: C4/C1 → C4 ⊆ Out C22xD4 | 32 | | (C2^2xD4).3C4 | 128,77 |
(C22xD4).4C4 = C23:C8:C2 | φ: C4/C1 → C4 ⊆ Out C22xD4 | 32 | | (C2^2xD4).4C4 | 128,200 |
(C22xD4).5C4 = C42.395D4 | φ: C4/C1 → C4 ⊆ Out C22xD4 | 32 | | (C2^2xD4).5C4 | 128,201 |
(C22xD4).6C4 = C24.(C2xC4) | φ: C4/C1 → C4 ⊆ Out C22xD4 | 32 | | (C2^2xD4).6C4 | 128,203 |
(C22xD4).7C4 = C2xC42.C22 | φ: C4/C1 → C4 ⊆ Out C22xD4 | 64 | | (C2^2xD4).7C4 | 128,254 |
(C22xD4).8C4 = C42.407D4 | φ: C4/C1 → C4 ⊆ Out C22xD4 | 32 | | (C2^2xD4).8C4 | 128,259 |
(C22xD4).9C4 = C42.70D4 | φ: C4/C1 → C4 ⊆ Out C22xD4 | 32 | | (C2^2xD4).9C4 | 128,265 |
(C22xD4).10C4 = C2xC4.D8 | φ: C4/C1 → C4 ⊆ Out C22xD4 | 64 | | (C2^2xD4).10C4 | 128,270 |
(C22xD4).11C4 = C42.413D4 | φ: C4/C1 → C4 ⊆ Out C22xD4 | 32 | | (C2^2xD4).11C4 | 128,277 |
(C22xD4).12C4 = C42.82D4 | φ: C4/C1 → C4 ⊆ Out C22xD4 | 32 | | (C2^2xD4).12C4 | 128,287 |
(C22xD4).13C4 = M4(2):20D4 | φ: C4/C1 → C4 ⊆ Out C22xD4 | 32 | | (C2^2xD4).13C4 | 128,632 |
(C22xD4).14C4 = M4(2):12D4 | φ: C4/C1 → C4 ⊆ Out C22xD4 | 32 | | (C2^2xD4).14C4 | 128,697 |
(C22xD4).15C4 = C2xC42.C4 | φ: C4/C1 → C4 ⊆ Out C22xD4 | 32 | | (C2^2xD4).15C4 | 128,862 |
(C22xD4).16C4 = C4:1D4.C4 | φ: C4/C1 → C4 ⊆ Out C22xD4 | 16 | 8+ | (C2^2xD4).16C4 | 128,866 |
(C22xD4).17C4 = M4(2).24C23 | φ: C4/C1 → C4 ⊆ Out C22xD4 | 16 | 8+ | (C2^2xD4).17C4 | 128,1620 |
(C22xD4).18C4 = C23.8M4(2) | φ: C4/C2 → C2 ⊆ Out C22xD4 | 32 | | (C2^2xD4).18C4 | 128,191 |
(C22xD4).19C4 = C42.393D4 | φ: C4/C2 → C2 ⊆ Out C22xD4 | 32 | | (C2^2xD4).19C4 | 128,192 |
(C22xD4).20C4 = C23:M4(2) | φ: C4/C2 → C2 ⊆ Out C22xD4 | 32 | | (C2^2xD4).20C4 | 128,197 |
(C22xD4).21C4 = C42.43D4 | φ: C4/C2 → C2 ⊆ Out C22xD4 | 32 | | (C2^2xD4).21C4 | 128,198 |
(C22xD4).22C4 = C2xD4:C8 | φ: C4/C2 → C2 ⊆ Out C22xD4 | 64 | | (C2^2xD4).22C4 | 128,206 |
(C22xD4).23C4 = C42.398D4 | φ: C4/C2 → C2 ⊆ Out C22xD4 | 32 | | (C2^2xD4).23C4 | 128,210 |
(C22xD4).24C4 = D4:M4(2) | φ: C4/C2 → C2 ⊆ Out C22xD4 | 32 | | (C2^2xD4).24C4 | 128,218 |
(C22xD4).25C4 = D4:5M4(2) | φ: C4/C2 → C2 ⊆ Out C22xD4 | 32 | | (C2^2xD4).25C4 | 128,222 |
(C22xD4).26C4 = C24.51(C2xC4) | φ: C4/C2 → C2 ⊆ Out C22xD4 | 64 | | (C2^2xD4).26C4 | 128,512 |
(C22xD4).27C4 = C25.C4 | φ: C4/C2 → C2 ⊆ Out C22xD4 | 16 | | (C2^2xD4).27C4 | 128,515 |
(C22xD4).28C4 = (C23xC4).C4 | φ: C4/C2 → C2 ⊆ Out C22xD4 | 32 | | (C2^2xD4).28C4 | 128,517 |
(C22xD4).29C4 = C23.22M4(2) | φ: C4/C2 → C2 ⊆ Out C22xD4 | 64 | | (C2^2xD4).29C4 | 128,601 |
(C22xD4).30C4 = C23:2M4(2) | φ: C4/C2 → C2 ⊆ Out C22xD4 | 64 | | (C2^2xD4).30C4 | 128,602 |
(C22xD4).31C4 = C42.325D4 | φ: C4/C2 → C2 ⊆ Out C22xD4 | 64 | | (C2^2xD4).31C4 | 128,686 |
(C22xD4).32C4 = C42.109D4 | φ: C4/C2 → C2 ⊆ Out C22xD4 | 64 | | (C2^2xD4).32C4 | 128,687 |
(C22xD4).33C4 = C2x(C22xC8):C2 | φ: C4/C2 → C2 ⊆ Out C22xD4 | 64 | | (C2^2xD4).33C4 | 128,1610 |
(C22xD4).34C4 = C24.73(C2xC4) | φ: C4/C2 → C2 ⊆ Out C22xD4 | 32 | | (C2^2xD4).34C4 | 128,1611 |
(C22xD4).35C4 = D4o(C22:C8) | φ: C4/C2 → C2 ⊆ Out C22xD4 | 32 | | (C2^2xD4).35C4 | 128,1612 |
(C22xD4).36C4 = C22xC4.D4 | φ: C4/C2 → C2 ⊆ Out C22xD4 | 32 | | (C2^2xD4).36C4 | 128,1617 |
(C22xD4).37C4 = C2xM4(2).8C22 | φ: C4/C2 → C2 ⊆ Out C22xD4 | 32 | | (C2^2xD4).37C4 | 128,1619 |
(C22xD4).38C4 = C2xC8:9D4 | φ: C4/C2 → C2 ⊆ Out C22xD4 | 64 | | (C2^2xD4).38C4 | 128,1659 |
(C22xD4).39C4 = C2xC8:6D4 | φ: C4/C2 → C2 ⊆ Out C22xD4 | 64 | | (C2^2xD4).39C4 | 128,1660 |
(C22xD4).40C4 = D4xM4(2) | φ: C4/C2 → C2 ⊆ Out C22xD4 | 32 | | (C2^2xD4).40C4 | 128,1666 |
(C22xD4).41C4 = C42.691C23 | φ: C4/C2 → C2 ⊆ Out C22xD4 | 32 | | (C2^2xD4).41C4 | 128,1704 |
(C22xD4).42C4 = C23:3M4(2) | φ: C4/C2 → C2 ⊆ Out C22xD4 | 32 | | (C2^2xD4).42C4 | 128,1705 |
(C22xD4).43C4 = D4:7M4(2) | φ: C4/C2 → C2 ⊆ Out C22xD4 | 32 | | (C2^2xD4).43C4 | 128,1706 |
(C22xD4).44C4 = C42.693C23 | φ: C4/C2 → C2 ⊆ Out C22xD4 | 32 | | (C2^2xD4).44C4 | 128,1707 |
(C22xD4).45C4 = C2xQ8oM4(2) | φ: C4/C2 → C2 ⊆ Out C22xD4 | 32 | | (C2^2xD4).45C4 | 128,2304 |
(C22xD4).46C4 = D4xC2xC8 | φ: trivial image | 64 | | (C2^2xD4).46C4 | 128,1658 |
(C22xD4).47C4 = C22xC8oD4 | φ: trivial image | 64 | | (C2^2xD4).47C4 | 128,2303 |