extension | φ:Q→Out N | d | ρ | Label | ID |
(C22×D4)⋊1C4 = C24.D4 | φ: C4/C1 → C4 ⊆ Out C22×D4 | 16 | | (C2^2xD4):1C4 | 128,75 |
(C22×D4)⋊2C4 = C2×C22.SD16 | φ: C4/C1 → C4 ⊆ Out C22×D4 | 32 | | (C2^2xD4):2C4 | 128,230 |
(C22×D4)⋊3C4 = C24.54D4 | φ: C4/C1 → C4 ⊆ Out C22×D4 | 32 | | (C2^2xD4):3C4 | 128,239 |
(C22×D4)⋊4C4 = C24.56D4 | φ: C4/C1 → C4 ⊆ Out C22×D4 | 32 | | (C2^2xD4):4C4 | 128,242 |
(C22×D4)⋊5C4 = C24.60D4 | φ: C4/C1 → C4 ⊆ Out C22×D4 | 32 | | (C2^2xD4):5C4 | 128,251 |
(C22×D4)⋊6C4 = C4○D4.D4 | φ: C4/C1 → C4 ⊆ Out C22×D4 | 16 | 8+ | (C2^2xD4):6C4 | 128,527 |
(C22×D4)⋊7C4 = C24.78D4 | φ: C4/C1 → C4 ⊆ Out C22×D4 | 16 | | (C2^2xD4):7C4 | 128,630 |
(C22×D4)⋊8C4 = C24.175C23 | φ: C4/C1 → C4 ⊆ Out C22×D4 | 32 | | (C2^2xD4):8C4 | 128,696 |
(C22×D4)⋊9C4 = C24.36D4 | φ: C4/C1 → C4 ⊆ Out C22×D4 | 16 | 8+ | (C2^2xD4):9C4 | 128,853 |
(C22×D4)⋊10C4 = C2≀C4⋊C2 | φ: C4/C1 → C4 ⊆ Out C22×D4 | 16 | 8+ | (C2^2xD4):10C4 | 128,854 |
(C22×D4)⋊11C4 = C2×C42⋊C4 | φ: C4/C1 → C4 ⊆ Out C22×D4 | 16 | | (C2^2xD4):11C4 | 128,856 |
(C22×D4)⋊12C4 = C4.4D4⋊C4 | φ: C4/C1 → C4 ⊆ Out C22×D4 | 16 | 8+ | (C2^2xD4):12C4 | 128,860 |
(C22×D4)⋊13C4 = C23.C24 | φ: C4/C1 → C4 ⊆ Out C22×D4 | 16 | 8+ | (C2^2xD4):13C4 | 128,1615 |
(C22×D4)⋊14C4 = C24.50D4 | φ: C4/C2 → C2 ⊆ Out C22×D4 | 64 | | (C2^2xD4):14C4 | 128,170 |
(C22×D4)⋊15C4 = C25⋊C4 | φ: C4/C2 → C2 ⊆ Out C22×D4 | 16 | | (C2^2xD4):15C4 | 128,513 |
(C22×D4)⋊16C4 = C24.165C23 | φ: C4/C2 → C2 ⊆ Out C22×D4 | 32 | | (C2^2xD4):16C4 | 128,514 |
(C22×D4)⋊17C4 = C23.35D8 | φ: C4/C2 → C2 ⊆ Out C22×D4 | 32 | | (C2^2xD4):17C4 | 128,518 |
(C22×D4)⋊18C4 = C24.66D4 | φ: C4/C2 → C2 ⊆ Out C22×D4 | 32 | | (C2^2xD4):18C4 | 128,521 |
(C22×D4)⋊19C4 = C2×C23.23D4 | φ: C4/C2 → C2 ⊆ Out C22×D4 | 64 | | (C2^2xD4):19C4 | 128,1019 |
(C22×D4)⋊20C4 = C2×C24.3C22 | φ: C4/C2 → C2 ⊆ Out C22×D4 | 64 | | (C2^2xD4):20C4 | 128,1024 |
(C22×D4)⋊21C4 = C24.90D4 | φ: C4/C2 → C2 ⊆ Out C22×D4 | 32 | | (C2^2xD4):21C4 | 128,1040 |
(C22×D4)⋊22C4 = C23.191C24 | φ: C4/C2 → C2 ⊆ Out C22×D4 | 32 | | (C2^2xD4):22C4 | 128,1041 |
(C22×D4)⋊23C4 = D4×C22⋊C4 | φ: C4/C2 → C2 ⊆ Out C22×D4 | 32 | | (C2^2xD4):23C4 | 128,1070 |
(C22×D4)⋊24C4 = C22×C23⋊C4 | φ: C4/C2 → C2 ⊆ Out C22×D4 | 32 | | (C2^2xD4):24C4 | 128,1613 |
(C22×D4)⋊25C4 = C2×C23.C23 | φ: C4/C2 → C2 ⊆ Out C22×D4 | 32 | | (C2^2xD4):25C4 | 128,1614 |
(C22×D4)⋊26C4 = C22×D4⋊C4 | φ: C4/C2 → C2 ⊆ Out C22×D4 | 64 | | (C2^2xD4):26C4 | 128,1622 |
(C22×D4)⋊27C4 = C2×C23.37D4 | φ: C4/C2 → C2 ⊆ Out C22×D4 | 32 | | (C2^2xD4):27C4 | 128,1625 |
(C22×D4)⋊28C4 = C22×C4≀C2 | φ: C4/C2 → C2 ⊆ Out C22×D4 | 32 | | (C2^2xD4):28C4 | 128,1631 |
(C22×D4)⋊29C4 = C2×C42⋊C22 | φ: C4/C2 → C2 ⊆ Out C22×D4 | 32 | | (C2^2xD4):29C4 | 128,1632 |
(C22×D4)⋊30C4 = C2×C22.11C24 | φ: C4/C2 → C2 ⊆ Out C22×D4 | 32 | | (C2^2xD4):30C4 | 128,2157 |
extension | φ:Q→Out N | d | ρ | Label | ID |
(C22×D4).1C4 = (C2×C4).98D8 | φ: C4/C1 → C4 ⊆ Out C22×D4 | 64 | | (C2^2xD4).1C4 | 128,2 |
(C22×D4).2C4 = (C2×D4)⋊C8 | φ: C4/C1 → C4 ⊆ Out C22×D4 | 32 | | (C2^2xD4).2C4 | 128,50 |
(C22×D4).3C4 = C2.C2≀C4 | φ: C4/C1 → C4 ⊆ Out C22×D4 | 32 | | (C2^2xD4).3C4 | 128,77 |
(C22×D4).4C4 = C23⋊C8⋊C2 | φ: C4/C1 → C4 ⊆ Out C22×D4 | 32 | | (C2^2xD4).4C4 | 128,200 |
(C22×D4).5C4 = C42.395D4 | φ: C4/C1 → C4 ⊆ Out C22×D4 | 32 | | (C2^2xD4).5C4 | 128,201 |
(C22×D4).6C4 = C24.(C2×C4) | φ: C4/C1 → C4 ⊆ Out C22×D4 | 32 | | (C2^2xD4).6C4 | 128,203 |
(C22×D4).7C4 = C2×C42.C22 | φ: C4/C1 → C4 ⊆ Out C22×D4 | 64 | | (C2^2xD4).7C4 | 128,254 |
(C22×D4).8C4 = C42.407D4 | φ: C4/C1 → C4 ⊆ Out C22×D4 | 32 | | (C2^2xD4).8C4 | 128,259 |
(C22×D4).9C4 = C42.70D4 | φ: C4/C1 → C4 ⊆ Out C22×D4 | 32 | | (C2^2xD4).9C4 | 128,265 |
(C22×D4).10C4 = C2×C4.D8 | φ: C4/C1 → C4 ⊆ Out C22×D4 | 64 | | (C2^2xD4).10C4 | 128,270 |
(C22×D4).11C4 = C42.413D4 | φ: C4/C1 → C4 ⊆ Out C22×D4 | 32 | | (C2^2xD4).11C4 | 128,277 |
(C22×D4).12C4 = C42.82D4 | φ: C4/C1 → C4 ⊆ Out C22×D4 | 32 | | (C2^2xD4).12C4 | 128,287 |
(C22×D4).13C4 = M4(2)⋊20D4 | φ: C4/C1 → C4 ⊆ Out C22×D4 | 32 | | (C2^2xD4).13C4 | 128,632 |
(C22×D4).14C4 = M4(2)⋊12D4 | φ: C4/C1 → C4 ⊆ Out C22×D4 | 32 | | (C2^2xD4).14C4 | 128,697 |
(C22×D4).15C4 = C2×C42.C4 | φ: C4/C1 → C4 ⊆ Out C22×D4 | 32 | | (C2^2xD4).15C4 | 128,862 |
(C22×D4).16C4 = C4⋊1D4.C4 | φ: C4/C1 → C4 ⊆ Out C22×D4 | 16 | 8+ | (C2^2xD4).16C4 | 128,866 |
(C22×D4).17C4 = M4(2).24C23 | φ: C4/C1 → C4 ⊆ Out C22×D4 | 16 | 8+ | (C2^2xD4).17C4 | 128,1620 |
(C22×D4).18C4 = C23.8M4(2) | φ: C4/C2 → C2 ⊆ Out C22×D4 | 32 | | (C2^2xD4).18C4 | 128,191 |
(C22×D4).19C4 = C42.393D4 | φ: C4/C2 → C2 ⊆ Out C22×D4 | 32 | | (C2^2xD4).19C4 | 128,192 |
(C22×D4).20C4 = C23⋊M4(2) | φ: C4/C2 → C2 ⊆ Out C22×D4 | 32 | | (C2^2xD4).20C4 | 128,197 |
(C22×D4).21C4 = C42.43D4 | φ: C4/C2 → C2 ⊆ Out C22×D4 | 32 | | (C2^2xD4).21C4 | 128,198 |
(C22×D4).22C4 = C2×D4⋊C8 | φ: C4/C2 → C2 ⊆ Out C22×D4 | 64 | | (C2^2xD4).22C4 | 128,206 |
(C22×D4).23C4 = C42.398D4 | φ: C4/C2 → C2 ⊆ Out C22×D4 | 32 | | (C2^2xD4).23C4 | 128,210 |
(C22×D4).24C4 = D4⋊M4(2) | φ: C4/C2 → C2 ⊆ Out C22×D4 | 32 | | (C2^2xD4).24C4 | 128,218 |
(C22×D4).25C4 = D4⋊5M4(2) | φ: C4/C2 → C2 ⊆ Out C22×D4 | 32 | | (C2^2xD4).25C4 | 128,222 |
(C22×D4).26C4 = C24.51(C2×C4) | φ: C4/C2 → C2 ⊆ Out C22×D4 | 64 | | (C2^2xD4).26C4 | 128,512 |
(C22×D4).27C4 = C25.C4 | φ: C4/C2 → C2 ⊆ Out C22×D4 | 16 | | (C2^2xD4).27C4 | 128,515 |
(C22×D4).28C4 = (C23×C4).C4 | φ: C4/C2 → C2 ⊆ Out C22×D4 | 32 | | (C2^2xD4).28C4 | 128,517 |
(C22×D4).29C4 = C23.22M4(2) | φ: C4/C2 → C2 ⊆ Out C22×D4 | 64 | | (C2^2xD4).29C4 | 128,601 |
(C22×D4).30C4 = C23⋊2M4(2) | φ: C4/C2 → C2 ⊆ Out C22×D4 | 64 | | (C2^2xD4).30C4 | 128,602 |
(C22×D4).31C4 = C42.325D4 | φ: C4/C2 → C2 ⊆ Out C22×D4 | 64 | | (C2^2xD4).31C4 | 128,686 |
(C22×D4).32C4 = C42.109D4 | φ: C4/C2 → C2 ⊆ Out C22×D4 | 64 | | (C2^2xD4).32C4 | 128,687 |
(C22×D4).33C4 = C2×(C22×C8)⋊C2 | φ: C4/C2 → C2 ⊆ Out C22×D4 | 64 | | (C2^2xD4).33C4 | 128,1610 |
(C22×D4).34C4 = C24.73(C2×C4) | φ: C4/C2 → C2 ⊆ Out C22×D4 | 32 | | (C2^2xD4).34C4 | 128,1611 |
(C22×D4).35C4 = D4○(C22⋊C8) | φ: C4/C2 → C2 ⊆ Out C22×D4 | 32 | | (C2^2xD4).35C4 | 128,1612 |
(C22×D4).36C4 = C22×C4.D4 | φ: C4/C2 → C2 ⊆ Out C22×D4 | 32 | | (C2^2xD4).36C4 | 128,1617 |
(C22×D4).37C4 = C2×M4(2).8C22 | φ: C4/C2 → C2 ⊆ Out C22×D4 | 32 | | (C2^2xD4).37C4 | 128,1619 |
(C22×D4).38C4 = C2×C8⋊9D4 | φ: C4/C2 → C2 ⊆ Out C22×D4 | 64 | | (C2^2xD4).38C4 | 128,1659 |
(C22×D4).39C4 = C2×C8⋊6D4 | φ: C4/C2 → C2 ⊆ Out C22×D4 | 64 | | (C2^2xD4).39C4 | 128,1660 |
(C22×D4).40C4 = D4×M4(2) | φ: C4/C2 → C2 ⊆ Out C22×D4 | 32 | | (C2^2xD4).40C4 | 128,1666 |
(C22×D4).41C4 = C42.691C23 | φ: C4/C2 → C2 ⊆ Out C22×D4 | 32 | | (C2^2xD4).41C4 | 128,1704 |
(C22×D4).42C4 = C23⋊3M4(2) | φ: C4/C2 → C2 ⊆ Out C22×D4 | 32 | | (C2^2xD4).42C4 | 128,1705 |
(C22×D4).43C4 = D4⋊7M4(2) | φ: C4/C2 → C2 ⊆ Out C22×D4 | 32 | | (C2^2xD4).43C4 | 128,1706 |
(C22×D4).44C4 = C42.693C23 | φ: C4/C2 → C2 ⊆ Out C22×D4 | 32 | | (C2^2xD4).44C4 | 128,1707 |
(C22×D4).45C4 = C2×Q8○M4(2) | φ: C4/C2 → C2 ⊆ Out C22×D4 | 32 | | (C2^2xD4).45C4 | 128,2304 |
(C22×D4).46C4 = D4×C2×C8 | φ: trivial image | 64 | | (C2^2xD4).46C4 | 128,1658 |
(C22×D4).47C4 = C22×C8○D4 | φ: trivial image | 64 | | (C2^2xD4).47C4 | 128,2303 |